How do I get from A to B as fast as possible? VAO, the collaborative traffic information service for Austria, covers all means of transport and helps travellers find the best possible route, including multimodal routing options. The dynamic route planner is based on real-time data and incorporates prediction methods for assessing the development of traffic. This Austrian-wide high-quality traveller information system is made possible through the close cooperation of numerous partners.

VOR | AnachB

To increase the user-friendliness of route and traffic information services in Austria, VAO ("Verkehrsauskunft Österreich" [Traffic Information Austria]) collaborates with a multitude of different players. The result: a single traffic information platform for all travellers, instead of many different services.

One of the contractors is VOR | AnachB, a customer-oriented traffic service, which contains all relevant traffic information for the City of Vienna, Burgenland and Lower Austria (VOR "Verkehrsverbund Ost-Region" [Transport Association Region East]). The service is operated by ITS Vienna Region, the regional competence centre for this transport network.

It ensures that high-quality information on the current regional traffic situation is collected and processed. For this purpose, ITS Vienna Region makes use of PTV Optima, a model-based solution for real-time traffic forecasts, which has been set up for an additional project in cooperation with PTV Group. The information generated during this project is made available for VAO and hence used by VOR|AnachB. AnachB [A to B] calculates the best route based on the current traffic situation. It compares the means of transport available for this route, including public transport, cycling, walking or travelling by truck or car.
PROJECT OVERVIEW
VAO includes all main roads of Austria and cycle/pedestrian routes in urban areas, incorporating 966,000 individual street links in major Austrian cities with more than 300,000 events and traffic conditions provided in real time.

- Project name: VAO
- Customer: ASFINAG and ITS Vienna Region
- PTV Group’s role: subcontractor
- PTV software: HyperPath
- Implementation period: 2012 – 2013

HYPERPATH
PTV’s dynamic routing engine offers specific journey planning tools based on the preferred mode of transport. This means drivers and cyclists can now easily plan their journey by taking into account current and future traffic conditions. The engine enables cyclists to find the best route from A to B in major cities and urban areas of Austria. Even information on the terrain and the range of ease or difficulty (e.g. avoiding slopes) is included in the calculation. Pedestrians can select the routes of their choice, including routing through parks and green areas in relation to average walk times. Trip planning features for HGVs and large vehicles include the identification of specific routes accessible for HGVs, taking into account width, height and weight restrictions.

HyperPath is also capable of handling public transport requests. As part of this project, HyperPath has access to a third-party public transport information system, proving the versatility of PTV’s modular software design.

The journey planner developed by PTV offers journey time, speed and other mode-specific information along a range of alternative route choices for cars, trucks, cyclists and pedestrians. Based on a comparison of the respective advantages, users are made aware of more environmentally friendly means of transport.

The information provided by VAO is based on real-time information and incorporates the effects of disruptions along the roads and the overall transport network. As a result, current road closures and speeds are included in the calculation of the best route. Green spaces closed to cyclists and pedestrians are dynamically displayed to inform road users about incidents on their preferred routes and help them choose recommended alternative routes.

CONTINUOUS IMPROVEMENT PROCESS
“Traffic Information Austria” is improved on an ongoing basis. This means additional data will be collected, detection of traffic data and real-time data will be optimised and new mobility services (sharing concepts) are going to be integrated. Usability and performance of end-user services are also part of the continuous optimisation process. Therefore, close partnerships with numerous experts from different projects such as GIP.at, GIP.gv.at, FCD-model region Salzburg or Testfeld-Telematik have been initiated.